68
1
v1v2 (latest)

High-Quality Real-Time Rendering Using Subpixel Sampling Reconstruction

Abstract

Generating high-quality, realistic rendering images for real-time applications generally requires tracing a few samples-per-pixel (spp) and using deep learning-based approaches to denoise the resulting low-spp images. Existing denoising methods have yet to achieve real-time performance at high resolutions due to the physically-based sampling and network inference time costs. In this paper, we propose a novel Monte Carlo sampling strategy to accelerate the sampling process and a corresponding denoiser, subpixel sampling reconstruction (SSR), to obtain high-quality images. Extensive experiments demonstrate that our method significantly outperforms previous approaches in denoising quality and reduces overall time costs, enabling real-time rendering capabilities at 2K resolution.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.