ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.01020
19
3

Supervised Acoustic Embeddings And Their Transferability Across Languages

3 January 2023
Sreepratha Ram
Hanan Aldarmaki
    SSL
ArXivPDFHTML
Abstract

In speech recognition, it is essential to model the phonetic content of the input signal while discarding irrelevant factors such as speaker variations and noise, which is challenging in low-resource settings. Self-supervised pre-training has been proposed as a way to improve both supervised and unsupervised speech recognition, including frame-level feature representations and Acoustic Word Embeddings (AWE) for variable-length segments. However, self-supervised models alone cannot learn perfect separation of the linguistic content as they are trained to optimize indirect objectives. In this work, we experiment with different pre-trained self-supervised features as input to AWE models and show that they work best within a supervised framework. Models trained on English can be transferred to other languages with no adaptation and outperform self-supervised models trained solely on the target languages.

View on arXiv
Comments on this paper