ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.00812
36
3

One-shot skill assessment in high-stakes domains with limited data via meta learning

16 December 2022
Erim Yanik
Steven D. Schwaitzberg
Gene Yang
Xavier Intes
Jack Norfleet
Matthew Hackett
S. De
ArXivPDFHTML
Abstract

Deep Learning (DL) has achieved robust competency assessment in various high-stakes fields. However, the applicability of DL models is often hampered by their substantial data requirements and confinement to specific training domains. This prevents them from transitioning to new tasks where data is scarce. Therefore, domain adaptation emerges as a critical element for the practical implementation of DL in real-world scenarios. Herein, we introduce A-VBANet, a novel meta-learning model capable of delivering domain-agnostic skill assessment via one-shot learning. Our methodology has been tested by assessing surgical skills on five laparoscopic and robotic simulators and real-life laparoscopic cholecystectomy. Our model successfully adapted with accuracies up to 99.5% in one-shot and 99.9% in few-shot settings for simulated tasks and 89.7% for laparoscopic cholecystectomy. This study marks the first instance of a domain-agnostic methodology for skill assessment in critical fields setting a precedent for the broad application of DL across diverse real-life domains with limited data.

View on arXiv
Comments on this paper