25
11

Lab-scale Vibration Analysis Dataset and Baseline Methods for Machinery Fault Diagnosis with Machine Learning

Abstract

The monitoring of machine conditions in a plant is crucial for production in manufacturing. A sudden failure of a machine can stop production and cause a loss of revenue. The vibration signal of a machine is a good indicator of its condition. This paper presents a dataset of vibration signals from a lab-scale machine. The dataset contains four different types of machine conditions: normal, unbalance, misalignment, and bearing fault. Three machine learning methods (SVM, KNN, and GNB) evaluated the dataset, and a perfect result was obtained by one of the methods on a 1-fold test. The performance of the algorithms is evaluated using weighted accuracy (WA) since the data is balanced. The results show that the best-performing algorithm is the SVM with a WA of 99.75\% on the 5-fold cross-validations. The dataset is provided in the form of CSV files in an open and free repository at https://zenodo.org/record/7006575.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.