ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.13689
9
6

ML-based Secure Low-Power Communication in Adversarial Contexts

28 December 2022
Guanqun Song
Ting-Le Zhu
    AAML
ArXivPDFHTML
Abstract

As wireless network technology becomes more and more popular, mutual interference between various signals has become more and more severe and common. Therefore, there is often a situation in which the transmission of its own signal is interfered with by occupying the channel. Especially in a confrontational environment, Jamming has caused great harm to the security of information transmission. So I propose ML-based secure ultra-low power communication, which is an approach to use machine learning to predict future wireless traffic by capturing patterns of past wireless traffic to ensure ultra-low-power transmission of signals via backscatters. In order to be more suitable for the adversarial environment, we use backscatter to achieve ultra-low power signal transmission, and use frequency-hopping technology to achieve successful confrontation with Jamming information. In the end, we achieved a prediction success rate of 96.19%.

View on arXiv
Comments on this paper