ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.12904
14
21

Assessing the Impact of Interface Vulnerabilities in Compartmentalized Software

25 December 2022
Hugo Lefeuvre
Vlad-Andrei Bădoiu
Yi Chien
Felipe Huici
Nathan Dautenhahn
Pierre Olivier
ArXivPDFHTML
Abstract

Least-privilege separation decomposes applications into compartments limited to accessing only what they need. When compartmentalizing existing software, many approaches neglect securing the new inter-compartment interfaces, although what used to be a function call from/to a trusted component is now potentially a targeted attack from a malicious compartment. This results in an entire class of security bugs: Compartment Interface Vulnerabilities (CIVs). This paper provides an in-depth study of CIVs. We taxonomize these issues and show that they affect all known compartmentalization approaches. We propose ConfFuzz, an in-memory fuzzer specialized to detect CIVs at possible compartment boundaries. We apply ConfFuzz to a set of 25 popular applications and 36 possible compartment APIs, to uncover a wide data-set of 629 vulnerabilities. We systematically study these issues, and extract numerous insights on the prevalence of CIVs, their causes, impact, and the complexity to address them. We stress the critical importance of CIVs in compartmentalization approaches, demonstrating an attack to extract isolated keys in OpenSSL and uncovering a decade-old vulnerability in sudo. We show, among others, that not all interfaces are affected in the same way, that API size is uncorrelated with CIV prevalence, and that addressing interface vulnerabilities goes beyond writing simple checks. We conclude the paper with guidelines for CIV-aware compartment interface design, and appeal for more research towards systematic CIV detection and mitigation.

View on arXiv
Comments on this paper