ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.12338
24
2

Two-Sample Test for High-Dimensional Covariance Matrices: a normal-reference approach

23 December 2022
Jin-Ting Zhang
Jingyi Wang
Tianming Zhu
ArXivPDFHTML
Abstract

Testing the equality of the covariance matrices of two high-dimensional samples is a fundamental inference problem in statistics. Several tests have been proposed but they are either too liberal or too conservative when the required assumptions are not satisfied which attests that they are not always applicable in real data analysis. To overcome this difficulty, a normal-reference test is proposed and studied in this paper. It is shown that under some regularity conditions and the null hypothesis, the proposed test statistic and a chi-square-type mixture have the same limiting distribution. It is then justified to approximate the null distribution of the proposed test statistic using that of the chi-square-type mixture. The distribution of the chi-square-type mixture can be well approximated using a three-cumulant matched chi-square-approximation with its approximation parameters consistently estimated from the data. The asymptotic power of the proposed test under a local alternative is also established. Simulation studies and a real data example demonstrate that in terms of size control, the proposed test outperforms the existing competitors substantially.

View on arXiv
Comments on this paper