42
0

Offline Clustering Approach to Self-supervised Learning for Class-imbalanced Image Data

Abstract

Class-imbalanced datasets are known to cause the problem of model being biased towards the majority classes. In this project, we set up two research questions: 1) when is the class-imbalance problem more prevalent in self-supervised pre-training? and 2) can offline clustering of feature representations help pre-training on class-imbalanced data? Our experiments investigate the former question by adjusting the degree of {\it class-imbalance} when training the baseline models, namely SimCLR and SimSiam on CIFAR-10 database. To answer the latter question, we train each expert model on each subset of the feature clusters. We then distill the knowledge of expert models into a single model, so that we will be able to compare the performance of this model to our baselines.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.