ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.11439
22
0

Novel Deep Learning Framework For Bovine Iris Segmentation

22 December 2022
Heemoon Yoon
Mira Park
Sang-Hee Lee
ArXivPDFHTML
Abstract

Iris segmentation is the initial step to identify biometric of animals to establish a traceability system of livestock. In this study, we propose a novel deep learning framework for pixel-wise segmentation with minimum use of annotation labels using BovineAAEyes80 public dataset. In the experiment, U-Net with VGG16 backbone was selected as the best combination of encoder and decoder model, demonstrating a 99.50% accuracy and a 98.35% Dice coefficient score. Remarkably, the selected model accurately segmented corrupted images even without proper annotation data. This study contributes to the advancement of the iris segmentation and the development of a reliable DNNs training framework.

View on arXiv
Comments on this paper