ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.10843
11
7

Generating Multiple-Length Summaries via Reinforcement Learning for Unsupervised Sentence Summarization

21 December 2022
Dongmin Hyun
Xiting Wang
Chanyoung Park
Xing Xie
Hwanjo Yu
ArXivPDFHTML
Abstract

Sentence summarization shortens given texts while maintaining core contents of the texts. Unsupervised approaches have been studied to summarize texts without human-written summaries. However, recent unsupervised models are extractive, which remove words from texts and thus they are less flexible than abstractive summarization. In this work, we devise an abstractive model based on reinforcement learning without ground-truth summaries. We formulate the unsupervised summarization based on the Markov decision process with rewards representing the summary quality. To further enhance the summary quality, we develop a multi-summary learning mechanism that generates multiple summaries with varying lengths for a given text, while making the summaries mutually enhance each other. Experimental results show that the proposed model substantially outperforms both abstractive and extractive models, yet frequently generating new words not contained in input texts.

View on arXiv
Comments on this paper