30
1

EffMulti: Efficiently Modeling Complex Multimodal Interactions for Emotion Analysis

Abstract

Humans are skilled in reading the interlocutor's emotion from multimodal signals, including spoken words, simultaneous speech, and facial expressions. It is still a challenge to effectively decode emotions from the complex interactions of multimodal signals. In this paper, we design three kinds of multimodal latent representations to refine the emotion analysis process and capture complex multimodal interactions from different views, including a intact three-modal integrating representation, a modality-shared representation, and three modality-individual representations. Then, a modality-semantic hierarchical fusion is proposed to reasonably incorporate these representations into a comprehensive interaction representation. The experimental results demonstrate that our EffMulti outperforms the state-of-the-art methods. The compelling performance benefits from its well-designed framework with ease of implementation, lower computing complexity, and less trainable parameters.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.