ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.07368
24
3
v1v2v3 (latest)

Shuffled Multi-Channel Sparse Signal Recovery

14 December 2022
Taulant Koka
M. Tsakiris
Michael Muma
Benjamín Béjar Haro
ArXiv (abs)PDFHTML
Abstract

Mismatches between samples and their respective channel or target commonly arise in several real-world applications. For instance, whole-brain calcium imaging of freely moving organisms, multiple-target tracking or multi-person contactless vital sign monitoring may be severely affected by mismatched sample-channel assignments. To systematically address this fundamental problem, we pose it as a signal reconstruction problem where we have lost correspondences between the samples and their respective channels. Assuming that we have a sensing matrix for the underlying signals, we show that the problem is equivalent to a structured unlabeled sensing problem, and establish sufficient conditions for unique recovery. To the best of our knowledge, a sampling result for the reconstruction of shuffled multi-channel signals has not been considered in the literature and existing methods for unlabeled sensing cannot be directly applied. We extend our results to the case where the signals admit a sparse representation in an overcomplete dictionary (i.e., the sensing matrix is not precisely known), and derive sufficient conditions for the reconstruction of shuffled sparse signals. We propose a robust reconstruction method that combines sparse signal recovery with robust linear regression for the two-channel case. The performance and robustness of the proposed approach is illustrated in an application related to whole-brain calcium imaging. The proposed methodology can be generalized to sparse signal representations other than the ones considered in this work to be applied in a variety of real-world problems with imprecise measurement or channel assignment.

View on arXiv
Comments on this paper