ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.06882
16
0

Envisioning a Human-AI collaborative system to transform policies into decision models

1 November 2022
V. López
Gabriele Picco
Inge Vejsbjerg
T. Hoang
Yufang Hou
M. Sbodio
J. Segrave-Daly
Denisa Moga
Sean Swords
Miao Wei
Eoin Carroll
ArXivPDFHTML
Abstract

Regulations govern many aspects of citizens' daily lives. Governments and businesses routinely automate these in the form of coded rules (e.g., to check a citizen's eligibility for specific benefits). However, the path to automation is long and challenging. To address this, recent global initiatives for digital government, proposing to simultaneously express policy in natural language for human consumption as well as computationally amenable rules or code, are gathering broad public-sector interest. We introduce the problem of semi-automatically building decision models from eligibility policies for social services, and present an initial emerging approach to shorten the route from policy documents to executable, interpretable and standardised decision models using AI, NLP and Knowledge Graphs. Despite the many open domain challenges, in this position paper we explore the enormous potential of AI to assist government agencies and policy experts in scaling the production of both human-readable and machine executable policy rules, while improving transparency, interpretability, traceability and accountability of the decision making.

View on arXiv
Comments on this paper