ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.06679
26
0

Predicting Knowledge Gain for MOOC Video Consumption

13 December 2022
Christian Otto
Markos Stamatakis
Anett Hoppe
Ralph Ewerth
ArXivPDFHTML
Abstract

Informal learning on the Web using search engines as well as more structured learning on MOOC platforms have become very popular in recent years. As a result of the vast amount of available learning resources, intelligent retrieval and recommendation methods are indispensable -- this is true also for MOOC videos. However, the automatic assessment of this content with regard to predicting (potential) knowledge gain has not been addressed by previous work yet. In this paper, we investigate whether we can predict learning success after MOOC video consumption using 1) multimodal features covering slide and speech content, and 2) a wide range of text-based features describing the content of the video. In a comprehensive experimental setting, we test four different classifiers and various feature subset combinations. We conduct a detailed feature importance analysis to gain insights in which modality benefits knowledge gain prediction the most.

View on arXiv
Comments on this paper