ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.06100
31
0

Realistic Modeling of Human Timings for Wearable Cognitive Assistance

12 December 2022
M. Muñoz
Vishnu Narayanan Moothedath
J. Champati
R. Klatzky
M. Satyanarayanan
James Gross
ArXivPDFHTML
Abstract

Wearable Cognitive Assistance (WCA) applications present a challenge to benchmark and characterize due to their human-in-the-loop nature. Employing user testing to optimize system parameters is generally not feasible, given the scope of the problem and the number of observations needed to detect small but important effects in controlled experiments. Considering the intended mass-scale deployment of WCA applications in the future, there exists a need for tools enabling human-independent benchmarking. We present in this paper the first model for the complete end-to-end emulation of humans in WCA. We build this model through statistical analysis of data collected from previous work in this field, and demonstrate its utility by studying application task durations. Compared to first-order approximations, our model shows a ~36% larger gap between step execution times at high system impairment versus low. We further introduce a novel framework for stochastic optimization of resource consumption-responsiveness tradeoffs in WCA, and show that by combining this framework with our realistic model of human behavior, significant reductions of up to 50% in number processed frame samples and 20% in energy consumption can be achieved with respect to the state-of-the-art.

View on arXiv
Comments on this paper