ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.01938
32
7

Hierarchical Policy Blending As Optimal Transport

4 December 2022
An T. Le
Kay Hansel
Jan Peters
Georgia Chalvatzaki
    OT
ArXivPDFHTML
Abstract

We present hierarchical policy blending as optimal transport (HiPBOT). HiPBOT hierarchically adjusts the weights of low-level reactive expert policies of different agents by adding a look-ahead planning layer on the parameter space. The high-level planner renders policy blending as unbalanced optimal transport consolidating the scaling of the underlying Riemannian motion policies. As a result, HiPBOT effectively decides the priorities between expert policies and agents, ensuring the task's success and guaranteeing safety. Experimental results in several application scenarios, from low-dimensional navigation to high-dimensional whole-body control, show the efficacy and efficiency of HiPBOT. Our method outperforms state-of-the-art baselines -- either adopting probabilistic inference or defining a tree structure of experts -- paving the way for new applications of optimal transport to robot control. More material at https://sites.google.com/view/hipobot

View on arXiv
Comments on this paper