ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.01554
29
9

Distributionally Robust Lyapunov Function Search Under Uncertainty

3 December 2022
Kehan Long
Yinzhuang Yi
Jorge Cortés
Nikolay Atanasov
ArXivPDFHTML
Abstract

This paper develops methods for proving Lyapunov stability of dynamical systems subject to disturbances with an unknown distribution. We assume only a finite set of disturbance samples is available and that the true online disturbance realization may be drawn from a different distribution than the given samples. We formulate an optimization problem to search for a sum-of-squares (SOS) Lyapunov function and introduce a distributionally robust version of the Lyapunov function derivative constraint. We show that this constraint may be reformulated as several SOS constraints, ensuring that the search for a Lyapunov function remains in the class of SOS polynomial optimization problems. For general systems, we provide a distributionally robust chance-constrained formulation for neural network Lyapunov function search. Simulations demonstrate the validity and efficiency of either formulation on non-linear uncertain dynamical systems.

View on arXiv
Comments on this paper