ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.00555
8
9

A Structure-guided Effective and Temporal-lag Connectivity Network for Revealing Brain Disorder Mechanisms

1 December 2022
Zhengwang Xia
Tao Zhou
S. Mamoon
Amani Alfakih
Jianfeng Lu
ArXivPDFHTML
Abstract

Brain network provides important insights for the diagnosis of many brain disorders, and how to effectively model the brain structure has become one of the core issues in the domain of brain imaging analysis. Recently, various computational methods have been proposed to estimate the causal relationship (i.e., effective connectivity) between brain regions. Compared with traditional correlation-based methods, effective connectivity can provide the direction of information flow, which may provide additional information for the diagnosis of brain diseases. However, existing methods either ignore the fact that there is a temporal-lag in the information transmission across brain regions, or simply set the temporal-lag value between all brain regions to a fixed value. To overcome these issues, we design an effective temporal-lag neural network (termed ETLN) to simultaneously infer the causal relationships and the temporal-lag values between brain regions, which can be trained in an end-to-end manner. In addition, we also introduce three mechanisms to better guide the modeling of brain networks. The evaluation results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrate the effectiveness of the proposed method.

View on arXiv
Comments on this paper