Alzheimer's patients gradually lose their ability to think, behave, and interact with others. Medical history, laboratory tests, daily activities, and personality changes can all be used to diagnose the disorder. A series of time-consuming and expensive tests are used to diagnose the illness. The most effective way to identify Alzheimer's disease is using a Random-forest classifier in this study, along with various other Machine Learning techniques. The main goal of this study is to fine-tune the classifier to detect illness with fewer tests while maintaining a reasonable disease discovery accuracy. We successfully identified the condition in almost 94% of cases using four of the thirty frequently utilized indicators.
View on arXiv