ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.16270
32
1

Neural Transducer Training: Reduced Memory Consumption with Sample-wise Computation

29 November 2022
Stefan Braun
Erik McDermott
Roger Hsiao
ArXivPDFHTML
Abstract

The neural transducer is an end-to-end model for automatic speech recognition (ASR). While the model is well-suited for streaming ASR, the training process remains challenging. During training, the memory requirements may quickly exceed the capacity of state-of-the-art GPUs, limiting batch size and sequence lengths. In this work, we analyze the time and space complexity of a typical transducer training setup. We propose a memory-efficient training method that computes the transducer loss and gradients sample by sample. We present optimizations to increase the efficiency and parallelism of the sample-wise method. In a set of thorough benchmarks, we show that our sample-wise method significantly reduces memory usage, and performs at competitive speed when compared to the default batched computation. As a highlight, we manage to compute the transducer loss and gradients for a batch size of 1024, and audio length of 40 seconds, using only 6 GB of memory.

View on arXiv
Comments on this paper