70
14

Linear Complexity Gibbs Sampling for Generalized Labeled Multi-Bernoulli Filtering

Abstract

Generalized Labeled Multi-Bernoulli (GLMB) densities arise in a host of multi-object system applications analogous to Gaussians in single-object filtering. However, computing the GLMB filtering density requires solving NP-hard problems. To alleviate this computational bottleneck, we develop a linear complexity Gibbs sampling framework for GLMB density computation. Specifically, we propose a tempered Gibbs sampler that exploits the structure of the GLMB filtering density to achieve an O(T(P+M))\mathcal{O}(T(P+M)) complexity, where TT is the number of iterations of the algorithm, PP and MM are the number hypothesized objects and measurements. This innovation enables an O(T(P+M+log(T))+PM)\mathcal{O}(T(P+M+\log(T))+PM) complexity implementation of the GLMB filter. Convergence of the proposed Gibbs sampler is established and numerical studies are presented to validate the proposed GLMB filter implementation.

View on arXiv
Comments on this paper