ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.14591
14
9

A Survey of Text Representation Methods and Their Genealogy

26 November 2022
Philipp Siebers
Christian Janiesch
Patrick Zschech
    AI4TS
ArXivPDFHTML
Abstract

In recent years, with the advent of highly scalable artificial-neural-network-based text representation methods the field of natural language processing has seen unprecedented growth and sophistication. It has become possible to distill complex linguistic information of text into multidimensional dense numeric vectors with the use of the distributional hypothesis. As a consequence, text representation methods have been evolving at such a quick pace that the research community is struggling to retain knowledge of the methods and their interrelations. We contribute threefold to this lack of compilation, composition, and systematization by providing a survey of current approaches, by arranging them in a genealogy, and by conceptualizing a taxonomy of text representation methods to examine and explain the state-of-the-art. Our research is a valuable guide and reference for artificial intelligence researchers and practitioners interested in natural language processing applications such as recommender systems, chatbots, and sentiment analysis.

View on arXiv
Comments on this paper