ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.14144
22
17

Graph Convolutional Network-based Feature Selection for High-dimensional and Low-sample Size Data

25 November 2022
Can Chen
Scott T. Weiss
Yang-Yu Liu
ArXivPDFHTML
Abstract

Feature selection is a powerful dimension reduction technique which selects a subset of relevant features for model construction. Numerous feature selection methods have been proposed, but most of them fail under the high-dimensional and low-sample size (HDLSS) setting due to the challenge of overfitting. In this paper, we present a deep learning-based method - GRAph Convolutional nEtwork feature Selector (GRACES) - to select important features for HDLSS data. We demonstrate empirical evidence that GRACES outperforms other feature selection methods on both synthetic and real-world datasets.

View on arXiv
Comments on this paper