ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.13866
64
11
v1v2 (latest)

Minimal Width for Universal Property of Deep RNN

25 November 2022
Changhoon Song
Geonho Hwang
Jun ho Lee
Myung-joo Kang
ArXiv (abs)PDFHTML
Abstract

A recurrent neural network (RNN) is a widely used deep-learning network for dealing with sequential data. Imitating a dynamical system, an infinite-width RNN can approximate any open dynamical system in a compact domain. In general, deep networks with bounded widths are more effective than wide networks in practice; however, the universal approximation theorem for deep narrow structures has yet to be extensively studied. In this study, we prove the universality of deep narrow RNNs and show that the upper bound of the minimum width for universality can be independent of the length of the data. Specifically, we show that a deep RNN with ReLU activation can approximate any continuous function or LpL^pLp function with the widths dx+dy+2d_x+d_y+2dx​+dy​+2 and max⁡{dx+1,dy}\max\{d_x+1,d_y\}max{dx​+1,dy​}, respectively, where the target function maps a finite sequence of vectors in Rdx\mathbb{R}^{d_x}Rdx​ to a finite sequence of vectors in Rdy\mathbb{R}^{d_y}Rdy​. We also compute the additional width required if the activation function is tanh⁡\tanhtanh or more. In addition, we prove the universality of other recurrent networks, such as bidirectional RNNs. Bridging a multi-layer perceptron and an RNN, our theory and proof technique can be an initial step toward further research on deep RNNs.

View on arXiv
Comments on this paper