ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.13762
30
14

ScanNeRF: a Scalable Benchmark for Neural Radiance Fields

24 November 2022
Luca de Luigi
Damiano Bolognini
Federico Domeniconi
Daniele De Gregorio
Matteo Poggi
Luigi Di Stefano
ArXivPDFHTML
Abstract

In this paper, we propose the first-ever real benchmark thought for evaluating Neural Radiance Fields (NeRFs) and, in general, Neural Rendering (NR) frameworks. We design and implement an effective pipeline for scanning real objects in quantity and effortlessly. Our scan station is built with less than 500hardwarebudgetandcancollectroughly4000imagesofascannedobjectinjust5minutes.SuchaplatformisusedtobuildScanNeRF,adatasetcharacterizedbyseveraltrain/val/testsplitsaimedatbenchmarkingtheperformanceofmodernNeRFmethodsunderdifferentconditions.Accordingly,weevaluatethreecutting−edgeNeRFvariantsonittohighlighttheirstrengthsandweaknesses.Thedatasetisavailableonourprojectpage,togetherwithanonlinebenchmarktofosterthedevelopmentofbetterandbetterNeRFs. hardware budget and can collect roughly 4000 images of a scanned object in just 5 minutes. Such a platform is used to build ScanNeRF, a dataset characterized by several train/val/test splits aimed at benchmarking the performance of modern NeRF methods under different conditions. Accordingly, we evaluate three cutting-edge NeRF variants on it to highlight their strengths and weaknesses. The dataset is available on our project page, together with an online benchmark to foster the development of better and better NeRFs.hardwarebudgetandcancollectroughly4000imagesofascannedobjectinjust5minutes.SuchaplatformisusedtobuildScanNeRF,adatasetcharacterizedbyseveraltrain/val/testsplitsaimedatbenchmarkingtheperformanceofmodernNeRFmethodsunderdifferentconditions.Accordingly,weevaluatethreecutting−edgeNeRFvariantsonittohighlighttheirstrengthsandweaknesses.Thedatasetisavailableonourprojectpage,togetherwithanonlinebenchmarktofosterthedevelopmentofbetterandbetterNeRFs.

View on arXiv
Comments on this paper