ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.12047
30
10

Convolutional Neural Generative Coding: Scaling Predictive Coding to Natural Images

22 November 2022
Alexander Ororbia
A. Mali
    BDL
ArXivPDFHTML
Abstract

In this work, we develop convolutional neural generative coding (Conv-NGC), a generalization of predictive coding to the case of convolution/deconvolution-based computation. Specifically, we concretely implement a flexible neurobiologically-motivated algorithm that progressively refines latent state feature maps in order to dynamically form a more accurate internal representation/reconstruction model of natural images. The performance of the resulting sensory processing system is evaluated on complex datasets such as Color-MNIST, CIFAR-10, and Street House View Numbers (SVHN). We study the effectiveness of our brain-inspired model on the tasks of reconstruction and image denoising and find that it is competitive with convolutional auto-encoding systems trained by backpropagation of errors and outperforms them with respect to out-of-distribution reconstruction (including the full 90k CINIC-10 test set).

View on arXiv
Comments on this paper