ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.12045
28
5

Design and control of a collision-resilient aerial vehicle with an icosahedron tensegrity structure

22 November 2022
Jiaming Zha
Xiangyu Wu
Ryan Dimick
M. Mueller
ArXivPDFHTML
Abstract

We introduce collision-resilient aerial vehicles with icosahedron tensegrity structures, capable of surviving high-speed impacts and resuming operations post-collision. We present a model-based design approach, which guides the selection of the tensegrity components by predicting structural stresses through a dynamics simulation. Furthermore, we develop an autonomous re-orientation controller that facilitates post-collision flight resumption. The controller enables the vehicles to rotate from an arbitrary orientation on the ground for takeoff. With collision resilience and re-orientation ability, the tensegrity aerial vehicles can operate in cluttered environments without complex collision-avoidance strategies. These capabilities are validated by a test of an experimental vehicle operating autonomously in a previously-unknown forest environment.

View on arXiv
Comments on this paper