ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.12036
65
12
v1v2v3 (latest)

Domain Alignment and Temporal Aggregation for Unsupervised Video Object Segmentation

22 November 2022
Suhwan Cho
Minhyeok Lee
Seunghoon Lee
Dogyoon Lee
    VOS
ArXiv (abs)PDFHTML
Abstract

Unsupervised video object segmentation aims at detecting and segmenting the most salient object in videos. In recent times, two-stream approaches that collaboratively leverage appearance cues and motion cues have attracted extensive attention thanks to their powerful performance. However, there are two limitations faced by those methods: 1) the domain gap between appearance and motion information is not well considered; and 2) long-term temporal coherence within a video sequence is not exploited. To overcome these limitations, we propose a domain alignment module (DAM) and a temporal aggregation module (TAM). DAM resolves the domain gap between two modalities by forcing the values to be in the same range using a cross-correlation mechanism. TAM captures long-term coherence by extracting and leveraging global cues of a video. On public benchmark datasets, our proposed approach demonstrates its effectiveness, outperforming all existing methods by a substantial margin.

View on arXiv
Comments on this paper