ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.12000
28
12

ArzEn-ST: A Three-way Speech Translation Corpus for Code-Switched Egyptian Arabic - English

22 November 2022
Injy Hamed
Nizar Habash
Slim Abdennadher
Ngoc Thang Vu
ArXivPDFHTML
Abstract

We present our work on collecting ArzEn-ST, a code-switched Egyptian Arabic - English Speech Translation Corpus. This corpus is an extension of the ArzEn speech corpus, which was collected through informal interviews with bilingual speakers. In this work, we collect translations in both directions, monolingual Egyptian Arabic and monolingual English, forming a three-way speech translation corpus. We make the translation guidelines and corpus publicly available. We also report results for baseline systems for machine translation and speech translation tasks. We believe this is a valuable resource that can motivate and facilitate further research studying the code-switching phenomenon from a linguistic perspective and can be used to train and evaluate NLP systems.

View on arXiv
Comments on this paper