ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.10011
16
4

Structural Quality Metrics to Evaluate Knowledge Graphs

18 November 2022
Sumin Seo
Heeseon Cheon
Hyunho Kim
Dongseok Hyun
ArXivPDFHTML
Abstract

This work presents six structural quality metrics that can measure the quality of knowledge graphs and analyzes five cross-domain knowledge graphs on the web (Wikidata, DBpedia, YAGO, Google Knowledge Graph, Freebase) as well as 'Raftel', Naver's integrated knowledge graph. The 'Good Knowledge Graph' should define detailed classes and properties in its ontology so that knowledge in the real world can be expressed abundantly. Also, instances and RDF triples should use the classes and properties actively. Therefore, we tried to examine the internal quality of knowledge graphs numerically by focusing on the structure of the ontology, which is the schema of knowledge graphs, and the degree of use thereof. As a result of the analysis, it was possible to find the characteristics of a knowledge graph that could not be known only by scale-related indicators such as the number of classes and properties.

View on arXiv
Comments on this paper