ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.09967
11
3

Learning on Health Fairness and Environmental Justice via Interactive Visualization

18 November 2022
A. Nayeem
I. Segovia-Dominguez
Huikyo Lee
Dongyun Han
Yuzhou Chen
Zhiwei Zhen
Yulia R. Gel
Isaac Cho
ArXivPDFHTML
Abstract

This paper introduces an interactive visualization interface with a machine learning consensus analysis that enables the researchers to explore the impact of atmospheric and socioeconomic factors on COVID-19 clinical severity by employing multiple Recurrent Graph Neural Networks. We designed and implemented a visualization interface that leverages coordinated multi-views to support exploratory and predictive analysis of hospitalizations and other socio-geographic variables at multiple dimensions, simultaneously. By harnessing the strength of geometric deep learning, we build a consensus machine learning model to include knowledge from county-level records and investigate the complex interrelationships between global infectious disease, environment, and social justice. Additionally, we make use of unique NASA satellite-based observations which are not broadly used in the context of climate justice applications. Our current interactive interface focus on three US states (California, Pennsylvania, and Texas) to demonstrate its scientific value and presented three case studies to make qualitative evaluations.

View on arXiv
Comments on this paper