ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.09929
31
0

Contrastive Credibility Propagation for Reliable Semi-Supervised Learning

17 November 2022
Brody Kutt
Pralay Ramteke
Xavier Mignot
P. Toman
Nandini Ramanan
Sujit Rokka Chhetri
Shan Huang
Min Du
W. Hewlett
ArXivPDFHTML
Abstract

Producing labels for unlabeled data is error-prone, making semi-supervised learning (SSL) troublesome. Often, little is known about when and why an algorithm fails to outperform a supervised baseline. Using benchmark datasets, we craft five common real-world SSL data scenarios: few-label, open-set, noisy-label, and class distribution imbalance/misalignment in the labeled and unlabeled sets. We propose a novel algorithm called Contrastive Credibility Propagation (CCP) for deep SSL via iterative transductive pseudo-label refinement. CCP unifies semi-supervised learning and noisy label learning for the goal of reliably outperforming a supervised baseline in any data scenario. Compared to prior methods which focus on a subset of scenarios, CCP uniquely outperforms the supervised baseline in all scenarios, supporting practitioners when the qualities of labeled or unlabeled data are unknown.

View on arXiv
Comments on this paper