ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.09783
24
17

UniSumm and SummZoo: Unified Model and Diverse Benchmark for Few-Shot Summarization

17 November 2022
Yulong Chen
Yang Liu
Ruochen Xu
Ziyi Yang
Chenguang Zhu
Michael Zeng
Yue Zhang
ArXivPDFHTML
Abstract

The high annotation costs and diverse demands of various summarization tasks motivate the development of few-shot summarization. However, despite the emergence of many summarization tasks and datasets, the current training paradigm for few-shot summarization systems ignores potentially shareable knowledge in heterogeneous datasets. To this end, we propose \textsc{UniSumm}, a unified few-shot summarization model pre-trained with multiple summarization tasks and can be prefix-tuned to excel at any few-shot summarization task. Meanwhile, to better evaluate few-shot summarizers, under the principles of diversity and robustness, we assemble and release a new benchmark \textsc{SummZoo}. It consists of 888 summarization tasks with multiple sets of few-shot samples for each task, covering diverse domains. Experimental results and analysis show that \textsc{UniSumm} outperforms strong baselines by a large margin across all sub-tasks in \textsc{SummZoo} under both automatic and human evaluations and achieves comparable results in human evaluation compared with a GPT-3.5 model.

View on arXiv
Comments on this paper