ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.08892
  4. Cited By
Fast Graph Generation via Spectral Diffusion

Fast Graph Generation via Spectral Diffusion

16 November 2022
Tianze Luo
Zhanfeng Mo
Sinno Jialin Pan
    DiffM
ArXivPDFHTML

Papers citing "Fast Graph Generation via Spectral Diffusion"

32 / 32 papers shown
Title
You Only Look One Step: Accelerating Backpropagation in Diffusion Sampling with Gradient Shortcuts
You Only Look One Step: Accelerating Backpropagation in Diffusion Sampling with Gradient Shortcuts
Hongkun Dou
Zeyu Li
Xingyu Jiang
Haoyang Li
Lijun Yang
Wen Yao
Yue Deng
DiffM
179
0
0
12 May 2025
Artificial Intelligence in Spectroscopy: Advancing Chemistry from Prediction to Generation and Beyond
Artificial Intelligence in Spectroscopy: Advancing Chemistry from Prediction to Generation and Beyond
Kehan Guo
Yili Shen
Gisela Abigail Gonzalez-Montiel
Yue Huang
Yujun Zhou
...
Zhichun Guo
Prayel Das
Nitesh Chawla
Olaf Wiest
Wei Wei
151
2
0
14 Feb 2025
Stealing Training Graphs from Graph Neural Networks
Minhua Lin
Enyan Dai
Junjie Xu
Jinyuan Jia
Xiang Zhang
Suhang Wang
DiffM
79
1
0
17 Nov 2024
Geometric Representation Condition Improves Equivariant Molecule Generation
Geometric Representation Condition Improves Equivariant Molecule Generation
Zian Li
Cai Zhou
Xiyuan Wang
Xingang Peng
Muhan Zhang
57
2
0
04 Oct 2024
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
Gabriele Corso
Hannes Stärk
Bowen Jing
Regina Barzilay
Tommi Jaakkola
DiffM
194
437
0
04 Oct 2022
Protein structure generation via folding diffusion
Protein structure generation via folding diffusion
Kevin E. Wu
Kevin Kaichuang Yang
Rianne van den Berg
James Zou
Alex X. Lu
Ava P. Amini
DiffM
72
200
0
30 Sep 2022
Wavelet Score-Based Generative Modeling
Wavelet Score-Based Generative Modeling
Florentin Guth
Simon Coste
Valentin De Bortoli
S. Mallat
DiffM
86
55
0
09 Aug 2022
Classifier-Free Diffusion Guidance
Classifier-Free Diffusion Guidance
Jonathan Ho
Tim Salimans
FaML
150
3,858
0
26 Jul 2022
Subspace Diffusion Generative Models
Subspace Diffusion Generative Models
Bowen Jing
Gabriele Corso
Renato Berlinghieri
Tommi Jaakkola
DiffM
58
78
0
03 May 2022
Score-based Generative Modeling of Graphs via the System of Stochastic
  Differential Equations
Score-based Generative Modeling of Graphs via the System of Stochastic Differential Equations
Jaehyeong Jo
Seul Lee
Sung Ju Hwang
DiffM
63
223
0
05 Feb 2022
Rapid Neural Architecture Search by Learning to Generate Graphs from
  Datasets
Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets
Hayeon Lee
Eunyoung Hyung
Sung Ju Hwang
68
43
0
02 Jul 2021
Variational Diffusion Models
Variational Diffusion Models
Diederik P. Kingma
Tim Salimans
Ben Poole
Jonathan Ho
DiffM
155
1,111
0
01 Jul 2021
Improved Denoising Diffusion Probabilistic Models
Improved Denoising Diffusion Probabilistic Models
Alex Nichol
Prafulla Dhariwal
DiffM
289
3,648
0
18 Feb 2021
GraphDF: A Discrete Flow Model for Molecular Graph Generation
GraphDF: A Discrete Flow Model for Molecular Graph Generation
Youzhi Luo
Keqiang Yan
Shuiwang Ji
DRL
214
199
0
01 Feb 2021
GraphEBM: Molecular Graph Generation with Energy-Based Models
GraphEBM: Molecular Graph Generation with Energy-Based Models
Meng Liu
Keqiang Yan
Bora Oztekin
Shuiwang Ji
64
88
0
31 Jan 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
294
6,409
0
26 Nov 2020
Factorizable Graph Convolutional Networks
Factorizable Graph Convolutional Networks
Yiding Yang
Zunlei Feng
Xiuming Zhang
Xinchao Wang
GNN
70
146
0
12 Oct 2020
TUDataset: A collection of benchmark datasets for learning with graphs
TUDataset: A collection of benchmark datasets for learning with graphs
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
214
819
0
16 Jul 2020
A Systematic Survey on Deep Generative Models for Graph Generation
A Systematic Survey on Deep Generative Models for Graph Generation
Xiaojie Guo
Liang Zhao
MedIm
82
148
0
13 Jul 2020
MoFlow: An Invertible Flow Model for Generating Molecular Graphs
MoFlow: An Invertible Flow Model for Generating Molecular Graphs
Chengxi Zang
Fei Wang
BDL
114
292
0
17 Jun 2020
Permutation Invariant Graph Generation via Score-Based Generative
  Modeling
Permutation Invariant Graph Generation via Score-Based Generative Modeling
Chenhao Niu
Yang Song
Jiaming Song
Shengjia Zhao
Aditya Grover
Stefano Ermon
DiffM
66
269
0
02 Mar 2020
GraphAF: a Flow-based Autoregressive Model for Molecular Graph
  Generation
GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation
Chence Shi
Minkai Xu
Zhaocheng Zhu
Weinan Zhang
Ming Zhang
Jian Tang
158
438
0
26 Jan 2020
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
213
3,870
0
12 Jul 2019
Graph Normalizing Flows
Graph Normalizing Flows
Jenny Liu
Aviral Kumar
Jimmy Ba
J. Kiros
Kevin Swersky
BDL
GNN
AI4CE
70
164
0
30 May 2019
MCNE: An End-to-End Framework for Learning Multiple Conditional Network
  Representations of Social Network
MCNE: An End-to-End Framework for Learning Multiple Conditional Network Representations of Social Network
Hao Wang
Tong Xu
Qi Liu
Defu Lian
Enhong Chen
Dongfang Du
Han Wu
Wen Su
54
118
0
27 May 2019
Improved Precision and Recall Metric for Assessing Generative Models
Improved Precision and Recall Metric for Assessing Generative Models
Tuomas Kynkaanniemi
Tero Karras
S. Laine
J. Lehtinen
Timo Aila
EGVM
95
858
0
15 Apr 2019
Constrained Generation of Semantically Valid Graphs via Regularizing
  Variational Autoencoders
Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders
Tengfei Ma
Jie Chen
Cao Xiao
116
209
0
07 Sep 2018
MolGAN: An implicit generative model for small molecular graphs
MolGAN: An implicit generative model for small molecular graphs
Nicola De Cao
Thomas Kipf
GNN
GAN
153
925
0
30 May 2018
Fréchet ChemNet Distance: A metric for generative models for molecules
  in drug discovery
Fréchet ChemNet Distance: A metric for generative models for molecules in drug discovery
Kristina Preuer
Philipp Renz
Thomas Unterthiner
Sepp Hochreiter
Günter Klambauer
MedIm
93
337
0
26 Mar 2018
Learning Deep Generative Models of Graphs
Learning Deep Generative Models of Graphs
Yujia Li
Oriol Vinyals
Chris Dyer
Razvan Pascanu
Peter W. Battaglia
GNN
AI4CE
170
661
0
08 Mar 2018
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models
Jiaxuan You
Rex Ying
Xiang Ren
William L. Hamilton
J. Leskovec
GNN
BDL
108
844
0
24 Feb 2018
GraphVAE: Towards Generation of Small Graphs Using Variational
  Autoencoders
GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders
M. Simonovsky
N. Komodakis
GNN
BDL
103
848
0
09 Feb 2018
1