ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.08464
28
4

ED-FAITH: Evaluating Dialogue Summarization on Faithfulness

15 November 2022
Sicong Huang
Asli Celikyilmaz
Haoran Li
    HILM
ArXivPDFHTML
Abstract

Abstractive summarization models typically generate content unfaithful to the input, thus highlighting the significance of evaluating the faithfulness of generated summaries. Most faithfulness metrics are only evaluated on news domain, can they be transferred to other summarization tasks? In this work, we first present a systematic study of faithfulness metrics for dialogue summarization. We evaluate common faithfulness metrics on dialogue datasets and observe that most metrics correlate poorly with human judgements despite performing well on news datasets. Given these findings, to improve existing metrics' performance on dialogue summarization, we first finetune on in-domain dataset, then apply unlikelihood training on negative samples, and show that they can successfully improve metric performance on dialogue data. Inspired by the strong zero-shot performance of the T0 language model, we further propose T0-Score -- a new metric for faithfulness evaluation, which shows consistent improvement against baseline metrics across multiple domains.

View on arXiv
Comments on this paper