ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.08089
123
27
v1v2v3v4 (latest)

ShadowDiffusion: Diffusion-based Shadow Removal using Classifier-driven Attention and Structure Preservation

15 November 2022
Yeying Jin
W. Ye
Wenhan Yang
Yuan. Yuan
R. Tan
    DiffM
ArXiv (abs)PDFHTMLGithub (21★)
Abstract

Shadow removal from a single image is challenging, particularly with the presence of soft and self shadows. Unlike hard shadows, soft shadows do not show any clear boundaries, while self shadows are shadows that cast on the object itself. Most existing methods require the detection/annotation of binary shadow masks, without taking into account the ambiguous boundaries of soft and self shadows. Most deep learning shadow removal methods are GAN-based and require statistical similarity between shadow and shadow-free domains. In contrast to these methods, in this paper, we present ShadowDiffusion, the first diffusion-based shadow removal method. ShadowDiffusion focuses on single-image shadow removal, even in the presence of soft and self shadows. To guide the diffusion process to recover semantically meaningful structures during the reverse diffusion, we introduce a structure preservation loss, where we extract features from the pre-trained Vision Transformer (DINO-ViT). Moreover, to focus on the recovery of shadow regions, we inject classifier-driven attention into the architecture of the diffusion model. To maintain the consistent colors of the regions where the shadows have been removed, we introduce a chromaticity consistency loss. Our ShadowDiffusion outperforms state-of-the-art methods on the SRD, AISTD, LRSS, USR and UIUC datasets, removing hard, soft, and self shadows robustly. Our method outperforms the SOTA method by 20% of the RMSE of the whole image on the SRD dataset.

View on arXiv
Comments on this paper