ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.07711
10
6

Multilevel Transformer For Multimodal Emotion Recognition

26 October 2022
Junyi He
Meimei Wu
Meng Li
Xiaobo Zhu
Feng Ye
ArXivPDFHTML
Abstract

Multimodal emotion recognition has attracted much attention recently. Fusing multiple modalities effectively with limited labeled data is a challenging task. Considering the success of pre-trained model and fine-grained nature of emotion expression, it is reasonable to take these two aspects into consideration. Unlike previous methods that mainly focus on one aspect, we introduce a novel multi-granularity framework, which combines fine-grained representation with pre-trained utterance-level representation. Inspired by Transformer TTS, we propose a multilevel transformer model to perform fine-grained multimodal emotion recognition. Specifically, we explore different methods to incorporate phoneme-level embedding with word-level embedding. To perform multi-granularity learning, we simply combine multilevel transformer model with Albert. Extensive experimental results show that both our multilevel transformer model and multi-granularity model outperform previous state-of-the-art approaches on IEMOCAP dataset with text transcripts and speech signal.

View on arXiv
Comments on this paper