ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.05297
34
26

Coordinating CAV Swarms at Intersections with a Deep Learning Model

10 November 2022
Jiawei Zhang
Sheng Li
Li Li
ArXivPDFHTML
Abstract

Connected and automated vehicles (CAVs) are viewed as a special kind of robots that have the potential to significantly improve the safety and efficiency of traffic. In contrast to many swarm robotics studies that are demonstrated in labs by employing a small number of robots, CAV studies aims to achieve cooperative driving of unceasing robot swarm flows. However, how to get the optimal passing order of such robot swarm flows even for a signal-free intersection is an NP-hard problem (specifically, enumerating based algorithm takes days to find the optimal solution to a 20-CAV scenario). Here, we introduce a novel cooperative driving algorithm (AlphaOrder) that combines offline deep learning and online tree searching to find a near-optimal passing order in real-time. AlphaOrder builds a pointer network model from solved scenarios and generates near-optimal passing orders instantaneously for new scenarios. Furthermore, our approach provides a general approach to managing preemptive resource sharing between swarm robotics (e.g., scheduling multiple automated guided vehicles (AGVs) and unmanned aerial vehicles (UAVs) at conflicting areas

View on arXiv
Comments on this paper