50
3

Over-The-Air Clustered Wireless Federated Learning

Abstract

Privacy and bandwidth constraints have led to the use of federated learning (FL) in wireless systems, where training a machine learning (ML) model is accomplished collaboratively without sharing raw data. While using bandwidth-constrained uplink wireless channels, over-the-air (OTA) FL is preferred since the clients can transmit parameter updates simultaneously to a server. A powerful server may not be available for parameter aggregation due to increased latency and server failures. In the absence of a powerful server, decentralised strategy is employed where clients communicate with their neighbors to obtain a consensus ML model while incurring huge communication cost. In this work, we propose the OTA semi-decentralised clustered wireless FL (CWFL) and CWFL-Prox algorithms, which is communication efficient as compared to the decentralised FL strategy, while the parameter updates converge to global minima as O(1/T) for each cluster. Using the MNIST and CIFAR10 datasets, we demonstrate the accuracy performance of CWFL is comparable to the central-server based COTAF and proximal constraint based methods, while beating single-client based ML model by vast margins in accuracy.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.