27
0

Exploring Explainability Methods for Graph Neural Networks

Abstract

With the growing use of deep learning methods, particularly graph neural networks, which encode intricate interconnectedness information, for a variety of real tasks, there is a necessity for explainability in such settings. In this paper, we demonstrate the applicability of popular explainability approaches on Graph Attention Networks (GAT) for a graph-based super-pixel image classification task. We assess the qualitative and quantitative performance of these techniques on three different datasets and describe our findings. The results shed a fresh light on the notion of explainability in GNNs, particularly GATs.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.