ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.01406
18
0

Incorporating High-Frequency Weather Data into Consumption Expenditure Predictions

6 October 2022
Anders Christensen
Joel Ferguson
Simón Ramírez-Amaya
ArXivPDFHTML
Abstract

Recent efforts have been very successful in accurately mapping welfare in datasparse regions of the world using satellite imagery and other non-traditional data sources. However, the literature to date has focused on predicting a particular class of welfare measures, asset indices, which are relatively insensitive to short term fluctuations in well-being. We suggest that predicting more volatile welfare measures, such as consumption expenditure, substantially benefits from the incorporation of data sources with high temporal resolution. By incorporating daily weather data into training and prediction, we improve consumption prediction accuracy significantly compared to models that only utilize satellite imagery.

View on arXiv
Comments on this paper