ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.01025
30
0

DynamicLight: Two-Stage Dynamic Traffic Signal Timing

2 November 2022
Liang Zhang
Yutong Zhang
Shubin Xie
J. Deng
Chen Li
ArXivPDFHTML
Abstract

Reinforcement learning (RL) is gaining popularity as an effective approach for traffic signal control (TSC) and is increasingly applied in this domain. However, most existing RL methodologies are confined to a single-stage TSC framework, primarily focusing on selecting an appropriate traffic signal phase at fixed action intervals, leading to inflexible and less adaptable phase durations. To address such limitations, we introduce a novel two-stage TSC framework named DynamicLight. This framework initiates with a phase control strategy responsible for determining the optimal traffic phase, followed by a duration control strategy tasked with determining the corresponding phase duration. Experimental results show that DynamicLight outperforms state-of-the-art TSC models and exhibits exceptional model generalization capabilities. Additionally, the robustness and potential for real-world implementation of DynamicLight are further demonstrated and validated through various DynamicLight variants. The code is released at https://github.com/LiangZhang1996/DynamicLight.

View on arXiv
Comments on this paper