ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.00250
110
29
v1v2v3 (latest)

FADO: Feedback-Aware Double COntrolling Network for Emotional Support Conversation

1 November 2022
Wei Peng
Ziyuan Qin
Yue Hu
Yuqiang Xie
Yunpeng Li
ArXiv (abs)PDFHTML
Abstract

Emotional Support Conversation (ESConv) aims to reduce help-seekers'emotional distress with the supportive strategy and response. It is essential for the supporter to select an appropriate strategy with the feedback of the help-seeker (e.g., emotion change during dialog turns, etc) in ESConv. However, previous methods mainly focus on the dialog history to select the strategy and ignore the help-seeker's feedback, leading to the wrong and user-irrelevant strategy prediction. In addition, these approaches only model the context-to-strategy flow and pay less attention to the strategy-to-context flow that can focus on the strategy-related context for generating the strategy-constrain response. In this paper, we propose a Feedback-Aware Double COntrolling Network (FADO) to make a strategy schedule and generate the supportive response. The core module in FADO consists of a dual-level feedback strategy selector and a double control reader. Specifically, the dual-level feedback strategy selector leverages the turn-level and conversation-level feedback to encourage or penalize strategies. The double control reader constructs the novel strategy-to-context flow for generating the strategy-constrain response. Furthermore, a strategy dictionary is designed to enrich the semantic information of the strategy and improve the quality of strategy-constrain response. Experimental results on ESConv show that the proposed FADO has achieved the state-of-the-art performance in terms of both strategy selection and response generation. Our code is available at https://github/after/reviewing.

View on arXiv
Comments on this paper