90
4
v1v2v3 (latest)

Pixel-Wise Contrastive Distillation

Abstract

We present a simple but effective pixel-level self-supervised distillation framework friendly to dense prediction tasks. Our method, called Pixel-Wise Contrastive Distillation (PCD), distills knowledge by attracting the corresponding pixels from student's and teacher's output feature maps. PCD includes a novel design called SpatialAdaptor which ``reshapes'' a part of the teacher network while preserving the distribution of its output features. Our ablation experiments suggest that this reshaping behavior enables more informative pixel-to-pixel distillation. Moreover, we utilize a plug-in multi-head self-attention module that explicitly relates the pixels of student's feature maps to enhance the effective receptive field, leading to a more competitive student. PCD \textbf{outperforms} previous self-supervised distillation methods on various dense prediction tasks. A backbone of \mbox{ResNet-18-FPN} distilled by PCD achieves 37.437.4 APbbox^\text{bbox} and 34.034.0 APmask^\text{mask} on COCO dataset using the detector of \mbox{Mask R-CNN}. We hope our study will inspire future research on how to pre-train a small model friendly to dense prediction tasks in a self-supervised fashion.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.