ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.17550
23
6

Nesterov Meets Optimism: Rate-Optimal Separable Minimax Optimization

31 October 2022
C. J. Li
An Yuan
Gauthier Gidel
Quanquan Gu
Michael I. Jordan
ArXivPDFHTML
Abstract

We propose a new first-order optimization algorithm -- AcceleratedGradient-OptimisticGradient (AG-OG) Descent Ascent -- for separable convex-concave minimax optimization. The main idea of our algorithm is to carefully leverage the structure of the minimax problem, performing Nesterov acceleration on the individual component and optimistic gradient on the coupling component. Equipped with proper restarting, we show that AG-OG achieves the optimal convergence rate (up to a constant) for a variety of settings, including bilinearly coupled strongly convex-strongly concave minimax optimization (bi-SC-SC), bilinearly coupled convex-strongly concave minimax optimization (bi-C-SC), and bilinear games. We also extend our algorithm to the stochastic setting and achieve the optimal convergence rate in both bi-SC-SC and bi-C-SC settings. AG-OG is the first single-call algorithm with optimal convergence rates in both deterministic and stochastic settings for bilinearly coupled minimax optimization problems.

View on arXiv
Comments on this paper