ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.17040
11
23

CodeEditor: Learning to Edit Source Code with Pre-trained Models

31 October 2022
Jia Li
Ge Li
Zhuo Li
Zhi Jin
Xing Hu
Kechi Zhang
Zhiyi Fu
    KELM
ArXivPDFHTML
Abstract

Developers often perform repetitive code editing activities for various reasons (e.g., code refactoring) during software development. Pre-trained code editing models have achieved the state-of-the-art (SOTA) results. Pre-trained models are first pre-trained with pre-training tasks and fine-tuned with the code editing task. Existing pre-training tasks mainly are code infilling tasks (e.g., masked language modeling), which are derived from the natural language processing field and are not designed for automatic code editing. This paper proposes a novel pre-training task specialized in code editing and presents an effective pre-trained code editing model named CodeEditor. Our pre-training task further improves the performance and generalization ability of code editing models. Specifically, we collect lots of real-world code snippets as the ground truth and use a powerful generator to rewrite them into mutated versions. Then, we pre-train our CodeEditor to edit mutated versions into the corresponding ground truth, to learn edit patterns. We conduct experiments on four code editing datasets and evaluate the pre-trained CodeEditor in three settings. (1) In the fine-tuning setting, we train the pre-trained CodeEditor with four datasets and evaluate it on the test data. CodeEditor outperforms the SOTA baselines by 15%, 25.5%, and 9.4% and 26.6% on four datasets. (2) In the few-shot setting, we train the pre-trained CodeEditor with limited data and evaluate it on the test data. CodeEditor substantially performs better than all baselines. (3) In the zero-shot setting, CodeEditor correctly edits 1,113 programs while the SOTA baselines can not work.

View on arXiv
Comments on this paper