ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.16493
21
0

Neural network quantum state with proximal optimization: a ground-state searching scheme based on variational Monte Carlo

29 October 2022
Feng Chen
Ming Xue
ArXivPDFHTML
Abstract

Neural network quantum states (NQS), incorporating with variational Monte Carlo (VMC) method, are shown to be a promising way to investigate quantum many-body physics. Whereas vanilla VMC methods perform one gradient update per sample, we introduce a novel objective function with proximal optimization (PO) that enables multiple updates via reusing the mismatched samples. Our VMC-PO method keeps the advantage of the previous importance sampling gradient optimization algorithm [L. Yang, {\it et al}, Phys. Rev. Research {\bf 2}, 012039(R)(2020)] that efficiently uses sampled states. PO mitigates the numerical instabilities during network updates, which is similar to stochastic reconfiguration (SR) methods, but achieves an alternative and simpler implement with lower computational complexity. We investigate the performance of our VMC-PO algorithm for ground-state searching with a 1-dimensional transverse-field Ising model and 2-dimensional Heisenberg antiferromagnet on a square lattice, and demonstrate that the reached ground-state energies are comparable to state-of-the-art results.

View on arXiv
Comments on this paper