ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.15111
16
19

MEET: Mobility-Enhanced Edge inTelligence for Smart and Green 6G Networks

27 October 2022
Yuxuan Sun
Bowen Xie
Sheng Zhou
Z. Niu
ArXivPDFHTML
Abstract

Edge intelligence is an emerging paradigm for real-time training and inference at the wireless edge, thus enabling mission-critical applications. Accordingly, base stations (BSs) and edge servers (ESs) need to be densely deployed, leading to huge deployment and operation costs, in particular the energy costs. In this article, we propose a new framework called Mobility-Enhanced Edge inTelligence (MEET), which exploits the sensing, communication, computing, and self-powering capabilities of intelligent connected vehicles for the smart and green 6G networks. Specifically, the operators can incorporate infrastructural vehicles as movable BSs or ESs, and schedule them in a more flexible way to align with the communication and computation traffic fluctuations. Meanwhile, the remaining compute resources of opportunistic vehicles are exploited for edge training and inference, where mobility can further enhance edge intelligence by bringing more compute resources, communication opportunities, and diverse data. In this way, the deployment and operation costs are spread over the vastly available vehicles, so that the edge intelligence is realized cost-effectively and sustainably. Furthermore, these vehicles can be either powered by renewable energy to reduce carbon emissions, or charged more flexibly during off-peak hours to cut electricity bills.

View on arXiv
Comments on this paper