ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.13715
17
7

PALT: Parameter-Lite Transfer of Language Models for Knowledge Graph Completion

25 October 2022
Jianhao Shen
Chenguang Wang
Ye Yuan
Jiawei Han
Heng Ji
Koushik Sen
Ming Zhang
Dawn Song
    KELM
    ALM
    VPVLM
ArXivPDFHTML
Abstract

This paper presents a parameter-lite transfer learning approach of pretrained language models (LM) for knowledge graph (KG) completion. Instead of finetuning, which modifies all LM parameters, we only tune a few new parameters while keeping the original LM parameters fixed. We establish this via reformulating KG completion as a "fill-in-the-blank" task, and introducing a parameter-lite encoder on top of the original LMs. We show that, by tuning far fewer parameters than finetuning, LMs transfer non-trivially to most tasks and reach competitiveness with prior state-of-the-art approaches. For instance, we outperform the fully finetuning approaches on a KG completion benchmark by tuning only 1% of the parameters. The code and datasets are available at \url{https://github.com/yuanyehome/PALT}.

View on arXiv
Comments on this paper