ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.12707
16
5

Accelerating the training of single-layer binary neural networks using the HHL quantum algorithm

23 October 2022
S. L. Alarcón
Cory E. Merkel
Martin Hoffnagle
Sabrina Ly
Alejandro Pozas-Kerstjens
ArXivPDFHTML
Abstract

Binary Neural Networks are a promising technique for implementing efficient deep models with reduced storage and computational requirements. The training of these is however, still a compute-intensive problem that grows drastically with the layer size and data input. At the core of this calculation is the linear regression problem. The Harrow-Hassidim-Lloyd (HHL) quantum algorithm has gained relevance thanks to its promise of providing a quantum state containing the solution of a linear system of equations. The solution is encoded in superposition at the output of a quantum circuit. Although this seems to provide the answer to the linear regression problem for the training neural networks, it also comes with multiple, difficult-to-avoid hurdles. This paper shows, however, that useful information can be extracted from the quantum-mechanical implementation of HHL, and used to reduce the complexity of finding the solution on the classical side.

View on arXiv
Comments on this paper